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SUMMARY

In this paper we investigate the relationship between stabilized and enriched finite element formulations
for the Stokes problem. We also present a new stabilized mixed formulation for which the stability
parameter is derived purely by the method of weighted residuals. This new formulation allows equal-
order interpolation for the velocity and pressure fields. Finally, we show by counterexample that a direct
equivalence between subgrid-based stabilized finite element methods and Galerkin methods enriched by
bubble functions cannot be constructed for quadrilateral and hexahedral elements using standard bubble
functions. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that under the mixed Galerkin formulation for the Stokes problem many practically
convenient combinations of interpolation functions for the velocity and pressure fields often do
not yield stable results. In particular, equal-order interpolation for velocity and pressure (which
is computationally the most convenient) is not stable. This numerical instability is attributed to
the lack of stability in the pressure field, which is mathematically explained by the celebrated
Ladyzhenskaya–Babuška–Brezzi (LBB) stability condition [1]. One can verify the LBB condition
numerically by means of a well-designed patch test.
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To address the deficiencies in the classical mixed formulation of the Stokes equations, two
classes have emerged grouped by similar methodologies: stabilized finite element methods and
enriched finite element methods. By stabilized finite element methods we mean methods that add
mesh-dependent terms to the standard Galerkin formulation that enable the formulation to satisfy
or circumvent the LBB condition [2]. In contrast, enriched finite element methods add bubble
functions to the finite element function space, which in turn play a stabilizing role.

Traditionally, the two most popular stabilized methods are the Streamline-Upwind/Petrov–
Galerkin (SUPG) method [3] and the Galerkin/least-squares (GLS) method [4]. In the GLS
method, least-squares forms of the residuals are added to the Galerkin finite element formula-
tion. These residual-based terms are defined over the element interiors only, and the terms on the
element boundaries are excluded. The underlying philosophy of the SUPG and the GLS methods
is to strengthen the classical variational formulations so that the discrete approximations, which
would otherwise be unstable, become stable and convergent. In the mid-1990s, Hughes [5] revis-
ited the origins of the stabilization schemes from a variational multi-scale view point. Under
this variational multi-scale method, different stabilization techniques (including GLS and SUPG)
are special cases of the underlying subgrid-scale modeling concept. Although referred to as the
Douglas–Wang method [6] rather than the variational multi-scale method, Franca et al. [2] proved
that the variational multi-scale approach for Stokes flow is stable for many elements including T3,
TET4, Q4, B8, and combinations of T3 and Q4 elements. Another important work regarding the
modeling of the fine scales in the variational multi-scale method is presented in [7].

While the applicability of stabilized methods has been established for a wide range of elements,
triangular elements have been the primary focus of enriched methods. Arnold et al. [8] were the
first to develop the enriched finite element method for Stokes flow. Using continuous piecewise
linear functions enriched by bubbles for velocity and piecewise linear functions for pressure, they
showed that the MINI element satisfies the LBB condition. Strictly speaking, the MINI element
is only for triangles. Other authors have tried to extend the work in [8] to quadrilaterals, which
can be called as MINI-type elements, but not exactly the MINI element. For example in [9], the
authors develop a stable quadrilateral element by adding three internal degrees of freedom to the
velocity space, but the natural extension of the MINI element to quadrilaterals is not stable.

Although much work has been reported in the literature (see e.g. [10–13]) showing an equiva-
lence between stabilized and enriched methods, the equivalence is not true for all PDEs nor is it
true for all elements. For example, in the case of nearly incompressible elasticity the equivalence
holds for T3, TET4, Q4, and B8 elements (see [14]). Likewise, for Stokes flow the equivalence
holds for T3 and TET4 elements. However, we will demonstrate that the equivalence breaks down
for Stokes flow for Q4 and B8 elements.

The primary aim of this work is twofold: first, we present a new stabilized formulation for
the Stokes problem, which can be derived purely by the method of weighted residuals. This new
formulation is stable for equal-order interpolation for the velocity and pressure fields, which is
computationally convenient. Second, we show that enriching Q4 and B8 elements with standard
bubble functions produces spurious pressure oscillations. The results confirm that one cannot
construct an equivalence between stabilized methods and bubble enrichment methods for these
elements.

The rest of this paper is organized as follows. First, we present a consistent stabilized formulation
for which the stability parameter is constructed from the element residual. Next, we propose
an alternative residual-based formulation that can be derived purely by the method of weighted
residuals. Lastly, we present a mathematically equivalent enriched formulation and show that
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the stabilized formulation does not show spurious pressure oscillations for a given test problem,
whereas the enriched formulation does. We conclude with some remarks regarding the equivalence
between the stabilized and enriched finite element methods for the Stokes problem.

2. GOVERNING EQUATIONS FOR THE STOKES PROBLEM

Let � be a bounded open domain and � be its boundary, which is assumed to be piecewise
smooth. Mathematically, � is defined as � := �̄−�, where �̄ is the closure of �. Let the velocity
vector field be denoted by v :�→Rnd , where ‘nd’ is the number of spatial dimensions. Let the
(kinematic) pressure field be denoted by p :�→R. As usual, � is divided into two parts denoted
by �v and �t, such that �v∩�t=∅ and �v∪�t=�. �v is the part of the boundary on which
velocity is prescribed, and �t is part of the boundary on which traction is prescribed. The governing
equations for Stokes flow can be written as

−2�∇2v+∇ p=b in � (1)

∇ ·v=0 in � (2)

v=vp on �v (3)

−pn+�(n·∇)v= tn on �t (4)

where ∇ is the gradient operator, ∇2 is the Laplacian operator, b is the body force, �>0 is the
kinematic viscosity, vp is the prescribed velocity vector field, tn is the prescribed traction, and n
is the unit outward normal vector to �. Equation (1) represents the balance of linear momentum,
and Equation (2) represents the continuity equation for an incompressible continuum. Equations
(3) and (4) are the Dirichlet and Neumann boundary conditions, respectively.

In the next section, we present the classical mixed formulation for the Stokes equations, which
will be the basis for the stabilized and enriched formulations.

3. CLASSICAL MIXED FORMULATION

Before we present the classical mixed formulation for the Stokes equations, let us define the function
spaces that will be used in the remainder of this paper. The function spaces for the velocity v(x)
and the weighting function associated with velocity, denoted by w(x), are respectively defined as

V :={v|v∈(H1(�))nd,v=vp on �v} (5)

W :={w|w∈(H1(�))nd,w=0 on �v} (6)

where H1(�) is a standard Sobolev space [1]. In the classical mixed formulation, the function
space for the pressure p(x) and its corresponding weighting function q(x) are given by

P :={p|p∈L2(�)} (7)
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where L2(�) is the space of square-integrable functions on the domain �. In the stabilized
formulations, the function space for p(x) and q(x) is defined as

P :={p|p∈H1(�)} (8)

For further details on function spaces refer to Brezzi and Fortin [1].
Remark 1
When Dirichlet boundary conditions are imposed everywhere on the boundary, that is, �t=∅, the
pressure can be determined only up to an arbitrary constant. In order to define the pressure field
uniquely, it is common to prescribe the average value of pressure∫

�
pd�= p0 (9)

where p0 is arbitrarily chosen (and can be zero). Then, the appropriate function spaces for the
pressure that should be used instead of P (defined in Equation (7)) are

P0 :=
{
p|p∈L2(�),

∫
�
pd�=0

}
(10)

Another way to define the pressure uniquely is to prescribe the value of the pressure at a point,
which is computationally the most convenient.

The classical mixed formulation (which is based on the Galerkin principle) for the Stokes
equations can be written as: Find v(x)∈V and p(x)∈P such that

a(w;v)+b(w; p)= f (w) ∀w∈W (11)

b(v;q)=0 ∀q∈P (12)

Let us define the bilinear forms as

a(w;v) :=
∫

�
∇w :2�∇vd� (13)

b(w; p) :=−
∫

�
(∇ ·w)pd� (14)

and the linear functional as

f (w) :=
∫

�
w ·bd�+

∫
�t
w ·tn d� (15)

Once the weak formulation of the governing equations is established, the approximate solution
based on the finite element method is determined in the usual manner. First, one chooses the approx-
imating finite element spaces, which (for a conforming formulation) will be finite-dimensional
subspaces of the underlying function spaces of the weak formulation. Let the finite element func-
tion spaces for the velocity, the weighting function associated with the velocity, and the pressure
be denoted by Vh ⊆V, Wh ⊆W, and Ph ⊆P, respectively. The finite element formulation of
the classical mixed formulation reads: Find vh(x)∈Vh and ph(x)∈Ph such that

a(wh;vh)+b(wh; ph)= f (wh) ∀wh ∈Wh (16)

b(vh;qh)=0 ∀qh ∈Ph (17)
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For mixed formulations, the inclusions Vh ⊆V, Wh ⊆W, and Ph ⊆P are themselves not
sufficient to produce stable results, and additional conditions must be met by these finite element
spaces to obtain meaningful numerical results. A systematic study of these types of conditions on
function spaces to obtain stable numerical results is the main theme of mixed finite elements. One
of the main conditions to be met is the LBB inf–sup stability condition.

Although the classical mixed formulation has many advantages (mainly its simplicity and
extensions to turbulent flows), it also has several numerical deficiencies. Most importantly, many
combinations of shape functions for the velocity and pressure do not satisfy the LBB stability
condition and therefore exhibit non-physical oscillations in numerical simulations. As mentioned
previously, two classes of methods have been developed to overcome the limitations associated
with the classical Galerkin approach; methods that augment the formulation with stabilizing terms
to circumvent the LBB stability condition and those that enrich the function space to satisfy the
LBB condition.

4. VARIATIONAL MULTI-SCALE FRAMEWORK

Hughes [5] proposed a variational framework based on the multi-scale decomposition of the
underlying fields into a coarse or resolvable scale and a subgrid or unresolvable scale. This
framework provides a systematic procedure to develop stable finite element formulations. In this
section, we present a multi-scale formulation for the Stokes equations. A similar formulation for
Darcy flow is presented in [15].

4.1. Multiscale decomposition

Let us divide the domain � into N non-overlapping subdomains �e (which in the finite element
context will be elements) such that

�=
N⋃

e=1
�e (18)

The boundary of the element �e is denoted by �e. We decompose the velocity field v(x) into
coarse-scale and fine-scale components, indicated as v̄(x) and v′(x), respectively.

v(x)= v̄(x)+v′(x) (19)

Likewise, we decompose the weighting function w(x) into the coarse-scale w̄(x) and the fine-scale
w′(x) components

w(x)= w̄(x)+w′(x) (20)

We further make an assumption that the fine-scale components vanish along each element boundary

v′(x)=w′(x)=0 on �e, e=1, . . . ,N (21)

Let V̄ be the function space for the coarse-scale component of the velocity v̄, and W̄ be the
function space for w̄, defined as

V̄ :=V, W̄ :=W (22)
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where V and W are defined earlier in Equations (5) and (6), respectively. Let V′ be the function
space for both the fine-scale component of the velocity v′ and its corresponding weighting function
w′, defined as

V′ :={v|v∈(H1(�e))nd,v=0 on �e,e=1, . . . ,N } (23)

The velocity field v(x) is now an element of the function space generated by the direct sum of V̄
and V′ denoted by V̄⊕V′. Similarly, the direct sum of W̄ and V′, denoted by W̄⊕V′, is the
function space for the field w(x).

In theory, we could decompose the pressure field into coarse-scale and fine-scale components.
However, for simplicity we assume that there are no fine-scale terms for the pressure p(x) and for its
corresponding weighting function q(x). Hence, the function space for the fields p(x) and q(x) isP.

4.2. Two-level classical mixed formulation

Substitution of Equations (19) and (20) into the classical mixed formulation given by Equations
(11) and (12) becomes the first point of departure from the classical Galerkin formulation.

a(w̄+w′; v̄+v′)+b(w̄+w′; p)= f (w̄+w′) (24)

b(v̄+v′;q)=0 (25)

Because the weighting functions w̄ and w′ are arbitrary, and because the functionals are linear
in the weighting functions, we can write the above problem as two sub problems. The coarse-scale
problem can be written as

a(w̄; v̄+v′)+b(w̄; p)= f (w̄) ∀w̄∈W̄ (26)

b(v̄+v′;q)=0 ∀q∈P (27)

where the quantities a(·; ·), b(·; ·), and f (.) are defined in Equations (13)–(15). The fine-scale
problem can be written as:

a(w′; v̄+v′)+b(w′; p)= f (w′) ∀w′ ∈W′ (28)

Remark 2
Note that the fine-scale problem is independent and uncoupled at the element level (defined over
the sum of element interiors). Owing to the assumption that the subgrid-scale response vanishes
on the element boundaries, a(w̄; v̄+v′)=a(w̄; v̄)+a(w̄;v′).

Using the linearity of the solution field and the divergence theorem on a(w̄;v′), we may
alternatively write the coarse-scale problem as

a(w̄; v̄)+b(w̄; p)+c(w̄;v′)= f (w̄) (29)

b(v̄;q)+d(v′;q)=0 (30)

and the fine-scale problem as

a(w′;v′)+c(v̄;w′)+d(w′; p)= f (w′) (31)
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where

c(w;v) :=−
∫

�
∇2w ·2�vd� (32)

d(w; p) :=
∫

�
w ·∇ pd� (33)

5. FINE-SCALE INTERPOLATION AND BUBBLE FUNCTIONS

If one chooses a single bubble function for interpolating the fine-scale variables (similar to the
MINI element), then we have

v′ =beb, w′ =bec (34)

where be is a bubble function, and b and c are constant vectors. The gradients of the fine-scale
velocity and weighting functions are

∇v′ =b∇beT , ∇w′ =c∇beT (35)

where ∇be is a dim×1 vector of the derivatives of the bubble function. Standard bubble functions
for several elements are provided in Table I.

We shall substitute these expressions into the above subproblems in two different ways, which
bring us to the point of departure between stabilized and enriched methods.

5.1. Weak variational multi-scale formulation

In the spirit of a stabilized method, we eliminate the fine-scale variables by solving the fine-scale
problem (Equation (31)) in terms of the coarse-scale variables. We then substitute the fine-scale
solution into the coarse-scale problem (Equation (29)) and solve the coarse-scale problem to obtain
v̄(x) and p(x). This procedure also produces the familiar stabilization parameter, s, with which
we augment the classical Galerkin formulation. Traditionally, one solves the fine-scale problem in
terms of the coarse-scale variables in a weak or integral sense. For this reason, we refer to this
method as the weak variational multi-scale (WVM) formulation.

5.2. Stabilization parameter

Typically, the stabilization parameter is derived in a consistent manner by incorporating the coarse-
scale residual evaluated over the element. Examples of such formulations include the work of

Table I. Bubble functions for standard finite elements.

Element Bubble function

T3 �1�2(1−�1−�2)

TET4 �1�2�3(1−�1−�2−�3)

Q4 (1−�21)(1−�22)

B8 (1−�21)(1−�22)(1−�23)
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Masud and Khurram [16] for the Stokes equations and that of Nakshatrala et al. [14] for nearly
incompressible linear elasticity. The derivation proceeds as follows.

Returning to Equation (31), substituting Equation (34), and noting the arbitrariness of c we have

2�
∫

�e
|∇be|2 d�b=

∫
�e

ber̄d� (36)

where r̄ :=2�∇2v̄−∇ p+b is the collection of the coarse-scale terms in the fine-scale problem. To
solve for b, one can make the approximation that in the limit of mesh refinement, the coarse-scale
residual is constant over the element domain. Hence, r̄ is moved outside of the integral in Equation
(36) such that

b=
[
2�
∫

�e
|∇be|2 d�

]−1 ∫
�e

be d�r̄ (37)

Remark 3
Note that this is the only approximation introduced for this method, aside from the assumption that
the subgrid scales vanish on the boundary (which is the key feature of the variational multi-scale
framework).

Remark 4
In the case of T3 and TET4 elements, the statement that the coarse-scale residual is constant over
the element domain is not an approximation, but is exactly true if b is constant.

Referring to Equation (34), the fine-scale velocity may then be written as

v′ =beb= 1

2�
sr̄ (38)

where we have introduced the stabilization parameter s

s=be
[∫

�e
|∇be|2 d�

]−1 ∫
�e

be d� (39)

5.3. WVM Galerkin formulation

Since we have an expression for the fine-scale velocity, we can substitute Equation (38) back into
the the coarse-scale problem to obtain a stabilized version of the Galerkin formulation

a(w̄; v̄)+b(w̄; p)−c

(
w̄; 1

2�
s(2�∇2v̄−∇ p+b)

)
= f (w̄) ∀w̄∈W̄ (40)

b(v̄;q)−d

(
1

2�
s(2�∇2v̄−∇ p+b);q

)
=0 ∀q∈P (41)

Note that the bilinear forms are defined in Equations (13)–(15) and (32).

6. STRONG VARIATIONAL MULTI-SCALE FORMULATION

We now present a new stabilized formulation for the Stokes problem that is consistently derived
from the method of weighted residuals. While traditionally the fine-scale problem is solved in a
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weak or integral sense, in the following formulation we solve the fine-scale problem in a strong
sense. Therefore, we refer to this method as the strong variational multi-scale (SVM) formulation.

Using integration by parts and the linearity of the solution field, we may rewrite the fine-scale
problem (given by Equation (31)) as:

c(v′;w′)+c(v̄;w′)+b(w′; p)= f (w′) (42)

Using the notation for the coarse-scale residual r̄ :=2�∇2v̄−∇ p+b, the above equation can be
written as: ∫

�
w′ ·(−2�∇2v′− r̄)d�=0 (43)

Because w′ is arbitrary and vanishes on the element boundaries and because v′ is constrained to
vanish on the element boundaries, the strong form of Equation (43) is

2�∇2v′ =−r̄ in �e, e=1, . . . ,N (44)

v′ =0 on �e (45)

Remark 5
The strong form may also be written as

L[v′]=−r̄(x) in �e, v′(x)=0 on �e, e=1, . . . ,N (46)

where L[·]=2�∇2(·) is the linear differential operator of the fine-scale problem. The analytical
solution to Equation (46) over the element domain may be written as

v′(x)=−
∫

�e
G(x,y)r̄(y)d�y (47)

where G(x,y) is Green’s function for the operator L. The potential for s to emanate from the
element’s Green’s function has been pointed out in [5].

Obtaining an analytical solution for Green’s function that is valid for any element configuration
is not always possible. In addition, in order to get stable results an approximation to Green’s
function will suffice. To this end, we approximate the solution using a single bubble function.

v′ =beb, ∇2v′ =(∇2be)b (48)

where ∇2be is defined as the Laplacian of the bubble function, which will never be zero (see
Appendix). Substituting Equation (48) into Equation (44) we have

b=− 1

2�∇2be
r̄ (49)

We now have an expression for the fine-scale velocity v′

v′ =− be

2�∇2be
r̄=− 1

2�
sr̄ (50)

where s is the stabilization parameter defined as

s := be

∇2be
(51)
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The SVM method has a well-developed theoretical background. The SVM and WVM methods
differ only with respect to the definition of the stability parameter, �. The SVM method fits into the
larger context of similar methods in that for the SVM method � is bounded (for carefully designed
bubbles) and the stability analysis found in [17] holds. Similar to the important work presented in
[7], in which a weighted residual method is used to obtain the Green’s function, we approximate
the fine-scale Green’s function in a collocation manner.

Remark 6
A straightforward analysis shows that for an element with characteristic dimension h, the stabiliza-
tion parameter s scales as h2. It is well-known in the mixed finite element literature (for example,
see [6, 18]) that s must scale as h2 to guarantee convergence, which appears to be satisfied by (51).

Remark 7
The above stabilization parameter makes no approximations relative to the coarse-scale residual,
as in the WVM formulation. Therefore, in the case of quadrilateral or hexahedral elements, no
additional approximations are introduced preserving a mathematically exact correspondence with
the enriched formulation presented below.

6.1. WVM Galerkin formulation

After substitution of Equation (50) into the coarse-scale problem (Equations (29) and (30)), the
resulting weak form is again expressed exactly as Equations (40) and (41).

a(w̄; v̄)+b(w̄; p)+c

(
w̄; 1

2�
s(2�∇2v̄−∇ p+b)

)
= f (w̄) ∀w̄∈W̄ (52)

b(v̄;q)+d

(
1

2�
s(2�∇2v̄−∇ p+b);q

)
=0 ∀q∈P (53)

Note that for linear elements like the T3 and TET4, ∇2w̄ and ∇2v̄ will be exactly zero.

7. ENRICHED FORMULATION

For the enriched formulation we treat the coarse and fine-scale problems (Equations (26)–(28)) as
two residual equations of the variables v̄, v′, and p. Instead of analytically solving for v′ in terms
of the coarse-scale variables (as in a stabilized formulation), we use static condensation to solve
the problem in a two-stage manner. The emphasis in this section is placed on the solution strategy,
since it represents the most relevant features of the enriched formulation.

7.1. Scalar residual

The scalar residual equations may be written as

rc(v̄;v′, p) :=a(w̄; v̄+v′)+b(w̄; p)− f (w̄) (54)

rp(v̄;v′) :=b(v̄+v′;q) (55)

rf(v̄;v′, p) :=a(w′; v̄+v′)+b(w′; p)− f (w′) (56)

where the subscripts ‘c’, ‘p’, and ‘f’ stand for coarse, pressure, and fine.
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7.2. Vector residual

To preserve the mathematical analogue to the SVM formulation, we again choose a single bubble
function for interpolating the fine-scale variables such that Equation (34) holds. As usual, v̄ and
its weighting function w̄ may be expressed in terms of the nodal values ˆ̄v and ˆ̄w as

v̄= ˆ̄vTNT, w̄= ˆ̄wT
NT (57)

where N is a row vector of shape functions for each node. Substituting Equations (34) and (57)
into Equations (54)–(56) and noting the arbitrariness of ˆ̄w and c, we can construct vector residuals,
R, that are the sum contributions of the vector residuals at the element level given as

Re
c(v̄;v′, p) :=2�

∫
�e

B̄Tvec[∇v̄+∇v′]d�−
∫

�e

vec[Ḡ]pd�−
∫

�e

(NTI)bd� (58)

Re
p(v̄;v′) :=−

∫
�e

NT∇ ·(v̄+v′)d� (59)

Re
f (v̄;v′, p) :=2�

∫
�e

B′Tvec[∇v̄+∇v′]d�−
∫

�e

B′Tvec[I]pd�−
∫

�e

(beI)bd� (60)

To write more compactly, we have made the substitutions

B̄ = ḠI, Ḡ :=J−TDNT

B′ = gI, g :=∇xb
e

(61)

where DN represents a matrix of the first derivatives of the element shape functions, J the element
jacobian matrix, vec[·] is an operation that represents a matrix with a vector, and  is the Kronecker
product [19] (see Appendix).

7.3. Stiffness matrix

Moving all applied force terms in R to the right-hand side, we can write Equations (58)–(60) in
matrix form as

K

⎡⎢⎢⎣
v̄

p

v′

⎤⎥⎥⎦=
⎡⎢⎣
fc

fp

ff

⎤⎥⎦ (62)

where f represents the sum of the element contributions to the applied forces, defined as

fec =
∫

�e

(NI)bd�, fep =0, fef =
∫

�e

(beI)bd� (63)

The global stiffness matrix K, before static condensation, has the form

K=
⎡⎢⎣
Kcc Kcp Kcf

Kpc Kpp Kpf

Kfc Kfp Kff

⎤⎥⎦ (64)

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1291–1314
DOI: 10.1002/fld



1302 D. Z. TURNER, K. B. NAKSHATRALA AND K. D. HJELMSTAD

where the element contributions are computed as follows:

Ke
cc = 2�

∫
�e

B̄TB̄d�, Ke
cp=−

∫
�e

vec[Ḡ]Nd�, Ke
cf=2�

∫
�e

B̄TB′ d�

Ke
pc = −

∫
�e

NTvec[Ḡ]T d�, Ke
pp=0, Ke

pf=−
∫

�e

NTgT d�

Ke
fc = 2�

∫
�e

B′TB̄d�, Ke
fp=−

∫
�e

gTNd�, Ke
ff=2�

∫
�e

B′TB′ d�

(65)

Using block Gauss elimination on Equation (62), the fine-scale components can be condensed
from the stiffness matrix. The resulting matrix equation can be written as

K̃

[
v̄

p

]
=
[
f̃c

f̃p

]
(66)

The global stiffness matrix has the form

K̃=
[
K̃cc K̃cp

K̃pc K̃pp

]
(67)

where we have augmented the coarse-scale components with the fine-scale components at the
element level as follows:

K̃e
cc=Ke

cc−Ke
cf(K

e
ff)

−1Ke
fc (68)

K̃e
cp=Ke

cp−Ke
cf(K

e
ff)

−1Ke
fp (69)

K̃e
pc=Ke

pc−Ke
pf(K

e
ff)

−1Ke
fc (70)

K̃e
pp=−Ke

pf(K
e
ff)

−1Ke
fp (71)

Similarly, the applied force vector has been augmented at the element level as

f̃ec = fec −Ke
cf(K

e
ff)

−1fef , f̃ep =−Ke
pf(K

e
ff)

−1fef (72)

After solving for the coarse-scale variables from Equation (66), the fine-scale variables can be
recovered with post processing if desired.

8. NUMERICAL RESULTS

In this section we contrast the performance of the enriched formulation with that of the WVM and
SVM stabilized formulations for various test problems.

8.1. Constant velocity and pressure problem

The constant velocity and pressure test problem represents an extremely simple physical state,
yet even the most sophisticated formulation must capture it without oscillations. The solution to
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Figure 1. Constant velocity and pressure test problem: domain and boundary conditions.
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Figure 2. Constant velocity and pressure test problem: (a) x-velocity and (b) pressure for 36
TET4 elements using the enriched formulation.

the constant velocity and pressure test problem is v=(10.0,0,0), p=10.0, which by inspection
satisfies the governing equations (Equations (1)–(4)). The boundary conditions are defined in
Figure 1 for the two-dimensional case.

8.1.1. TET4 elements. As already mentioned in the introduction, the stability of the enriched
method has been proved for triangular elements, but for the sake of completeness, we show that
TET4 elements also perform well for the constant velocity and pressure problem. The results are
shown in Figure 2.

Remark 8
As an aside, the authors would also like to point out that for a well-centered triangle mesh (triangles
with no interior angles greater than or equal to 90◦), even the standard Galerkin formulation
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Figure 3. Constant velocity and pressure test problem: (a) x-velocity and (b) pressure for 336 well-centered
triangle elements using a standard Galerkin formulation.
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Figure 4. Constant velocity and pressure test problem: (a) x-velocity and (b) pressure for 100 Q4 elements
using the enriched formulation.

produces no oscillations for the constant velocity and pressure problem. The results are shown in
Figure 3. A proof for the stability of such meshes is yet to appear in the literature.

8.1.2. Q4 elements. As pointed out in Remark 4, the statement that the coarse-scale residual is
constant over the element domain in the limit of refinement is exactly true for T3 and TET4
elements for a constant body force, but in the case of Q4 and B8 elements, this statement is only
an approximation. Owing to the introduction of this approximation, the enriched and stabilized
formulations produce starkly contrasting results for Q4 elements when applied to the constant
velocity and pressure problem. Neither the WVM nor the SVM formulation shows any oscillations
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Figure 5. Constant velocity and pressure test problem: (a) x-velocity and (b) pressure for 8 B8 elements
using the enriched formulation.

in the pressure or velocity, but as shown in Figure 4, one can see that the enriched formulation
shows severe pressure oscillations. Brezzi and Pitkaranta [20] proposed a stabilizing technique to
remedy such spurious modes by circumventing the LBB condition. To do so, one augments the
enriched formulation with an added stability term �(∇q;∇ p), where �≈O(h2). This resolves the
‘missing’ Kpp term in the stiffness matrix before static condensation. Performing this augmentation
indeed weakly stabilizes the constant velocity and pressure problem, but this artificial term is not
mathematically consistent. A similar approach, the pressure stabilizing/Petrov–Galerkin (PSPG)
method [18] circumvents the LBB condition, but preserves consistency by applying a perturbed
weight function to all terms in the momentum equation. Although the PSPG method avoids
oscillations in the pressure, the stability parameter is usually defined in an ad hoc manner.

In [21–24], the authors present an eigenvalue problem associated with the discrete LBB condi-
tion. Analysis of the eigenvalue spectrum reveals certain oscillatory modes, for example, the pure
pressure modes for which the associated eigenvalues are zero. The pure pressure modes consist
of the hydrostatic mode and the checkerboard mode. The hydrostatic mode can easily be removed
by properly prescribing the pressure boundary conditions, but the checkerboard mode is related
to linear dependence in the discretized system of equations. Using a unit square discretized with
a grid of n×n enriched Q4 and T3 elements, we present the results from a similar eigenvalue
analysis in Figure 6. The results show that bubble enrichment removes the checkerboard mode
for the T3 (MINI) element, but that the checkerboard mode remains for the enriched Q4 element.
The presence of the checkerboard mode for the enriched Q4 element is consistent with the results
shown in Figure 4.

8.1.3. B8 elements. Results similar to the two-dimensional case are obtained when extended to
three dimensions. In particular, the B8 element also shows non-physical oscillations for this test
problem that increase with mesh refinement. Figure 5 shows the results of the three-dimensional
test problem for a coarse mesh, and Figure 9 shows the results for a refined mesh. Notice that no
oscillations are present for the results obtained with the WVM or SVM formulations as presented
in Figures 7 and 8.
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Figure 6. Eigenvalues, k, associated with the discrete Stokes problem for enriched Q4 versus enriched T3
(MINI) elements for 1/h=10: (a) close-up of pure pressure modes and (b) all eigenvalues shown.
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Figure 7. Constant velocity and pressure test problem: (a) x-velocity and (b) pressure for 8 B8 elements
using the weak variational multi-scale formulation.

8.2. SVM formulation

To further verify the SVM formulation of the Stokes problem, we present the results for some test
problems along with a convergence analysis.

8.2.1. Lid-driven cavity. The first problem evaluated is the well-known lid-driven cavity problem.
A description of the domain, along with the boundary conditions, is shown in Figure 10. Contours
of the velocity and pressure are shown in Figure 11. The results are in good accordance with other
published results as shown in Table II.

8.2.2. Body force-driven cavity. Another problem evaluated is the body force-driven cavity taken
from [25]. The problem geometry is the same as the lid-driven cavity except that a velocity
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Figure 8. Constant velocity and pressure test problem: (a) x-velocity and (b) pressure for 8 B8 elements
using the strong variational multi-scale formulation.
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Figure 9. Constant velocity and pressure test problem: (a) x-velocity and (b) pressure for 4096 B8 elements
using the enriched formulation.

vx =vy =0.0 is prescribed on the boundary and a constant body force is applied to the entire
domain. The prescribed constant body force is given as

b1 = (12−24y)x4+(−24+48y)x3+(−48y+72y2−48y3+12)x2

+(−2+24y−72y2+48y3)x+1−4y+12y2−8y3

b2 = (8−48y+48y2)x3+(−12+72y−72y2)x2

+(4−24y+48y2−48y3+24y4)x−12y2+24y3−12y4

(73)
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Figure 10. Lid-driven cavity: problem statement and boundary conditions. The non-leaky cavity approach
is used here, which resolves the discontinuity at the upper two corners of the domain by assuming that

the corners belong to the vertical walls.
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Figure 11. Lid-driven cavity test problem: (a) velocity magnitude and (b) pressure for 100 B8 elements.

The exact solution is
vx = x2(1−x)2(2y−6y2+4y3)

vy = −y2(1− y)2(2x−6x2+4x3)

p = x(1−x)

(74)

Numerical results are shown in Figure 12 and they correspond well with other published results.
The convergence properties of the SVM formulation are shown in Figure 13. To measure the error
in the velocity, the L2 norm is used, whereas the H1 semi-norm is used to compute the error in
the pressure. Notice that the convergence rates are as expected for the Stokes problem using linear
elements [18].

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1291–1314
DOI: 10.1002/fld



ON THE STABILITY OF BUBBLE FUNCTIONS 1309

Table II. Position of the main cavity vortex.

Element type y-Location

Present simulation B8 0.753
Donea and Huerta [25] Q2Q1 0.756
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Figure 12. Body force-driven cavity test problem: (a) velocity magnitude and (b) pressure
computed with 1600 Q4 elements.
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Figure 13. Convergence rates on a uniform mesh comparing the strong and weak variational multi-scale
formulations: (a) L2 norm of velocity and (b) H1

0 semi-norm of pressure.

9. CONCLUSIONS

We have introduced a new stabilized formulation for the Stokes problem, which is appropriate
for equal-order interpolation for the velocity and pressure fields. The new formulation produces
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a scalar stabilization parameter that is consistently derived purely by the method of weighted
residuals. We have also shown that an equivalence between enriched finite element methods and
stabilized methods for the Stokes problem does not exist for certain elements. In particular, we
have shown that enriching Q4 and B8 elements with standard bubble functions produces unstable
results. Clearly, this work highlights the need for more emphasis in the development of bubble
function enriched methods and the exact nature of their relationship to stabilized formulations.

APPENDIX A

A.1. Notation and definitions

Consider an n ×m matrix A and a p×q matrix B

A=

⎡⎢⎢⎢⎣
a1,1 . . . a1,m

...
. . .

...

an,1 . . . an,m

⎤⎥⎥⎥⎦ , B=

⎡⎢⎢⎢⎣
b1,1 . . . b1,q

...
. . .

...

bp,1 . . . bp,q

⎤⎥⎥⎥⎦
The Kronecker product of these matrices is an np×mq matrix and is defined as

AB :=

⎡⎢⎢⎢⎣
a1,1B . . . a1,mB

...
. . .

...

an,1B . . . an,mB

⎤⎥⎥⎥⎦
The vec[·] operator is defined as

vec[A] :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1
...

a1,m
...

an,1
...

an,m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
A.2. The divergence of the jacobian matrix

Consider the jacobian matrix J :=�x/�n, a matrix of the coordinates of the nodes of an element,
x̂, and the first and second derivatives of the shape functions DN and D2N, such that x=Nx̂,
[DN]nm =�Nn/�nm , and [D2N]nms =�Nn/�ns�nm . Starting with a simple identity, we can derive
the divergence of the jacobian matrix as follows:

JJ−1=I

Jim J−1
mk =�ik
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�
�xk

(Jim J−1
mk )= �

�xk
(�ik)=0

�Jim
�xk

J−1
mk + Jim

�J−1
mk

�xk
=0

J−1
pi

�Jim
�xk

J−1
mk +�pm

�J−1
mk

�xk
=0

�J−1
pk

�xk
=−J−1

pi
�Jim
�xk

J−1
mk

�J−1
pk

�xk
=−J−1

pi x̂ni
�

�xk

(
�Nn

��m

)
J−1
mk

�J−1
pk

�xk
=−J−1

pi x̂ni
�

��s

�Nn

��m

��s
�xk

J−1
mk

�J−1
pk

�xk
= �

�xk

��p

�xk
=−J−1

pi x̂ni D
2Nnms J

−1
mk J

−1
sk

∇ ·J−1=−J−1x̂TD2NJ−1J−T

To further clarify, for a Q4 element, x̂, DN, and D2N are defined as

x̂ :=

⎡⎢⎢⎢⎢⎣
x1 y1

x2 y2

x3 y3

x4 y4

⎤⎥⎥⎥⎥⎦

DN :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�N1

��1

�N1

��2
...

...

�N4

��1

�N4

��2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

D2N :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2N1

��1��1

�2N1

��1��2
. . .

�2N1

��2��2
...

...
. . .

...

�2N4

��1��1

�2N4

��1��2
. . .

�2N4

��2��2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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A.3. The Laplacian of a bubble function

Noting that b is a constant vector and making use of the divergence of the jacobian matrix as
shown above, the Laplacian of a bubble function can be computed as follows:

∇2v′ = �
�xi

�
�xi

be(�)� j

= �
�xi

(
�be(�)

��k

��k
�xi

)
� j

=
(

�
�xi

�be(�)

��k

��k
�xi

+ �be(�)

��k

�
�xi

��k
�xi

)
� j

=
(

�
��p

�be(�)

��k

��p

�xi

��k
�xi

+ �be(�)

��k

�
�xi

��k
�xi

)
� j

=
(

�
��p

�be(�)

��k

��p

�xi

��k
�xi

− �be(�)

��k

��k
�xr

x̂nr
�

��s

�Nn

��m

��m
�xi

��s
��i

)
� j

= (Hbe
pk J

−1
pi J−1

ki −(∇�b
e)k J

−1
kr x̂nr D

2Nnms J
−1
mi J

−1
si )� j

= (Hbe :J−1J−T−∇�b
eT J−1x̂TD2N :J−1J−T)b

∇2be :=(Hbe :J−1J−T−∇�b
eTJ−1x̂TD2N :J−1J−T)

For trilinear B8 elements, D2N is defined as

D2N :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2N1

��1��1

�2N1

��1��2

�2N1

��1��3
. . .

�2N1

��3��3
...

...
...

. . .
...

�2N8

��1��1

�2N8

��1��2

�2N8

��1��3
. . .

�2N8

��3��3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that D2N is a matrix representation of a third-order tensor. The matrix representing the second
derivatives of the bubble functions, Hbe , is given as

Hbe :=
[

�2be

��1��1

�2be

��1��2

�2be

��1��3
. . .

�2be

��3��3

]
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stable Petrov–Galerkin formulation of the Stokes problem accommodating equal order interpolations. Computer
Methods in Applied Mechanics and Engineering 1986; 59:85–99.

19. Graham A. Kronecker Products and Matrix Calculus: With Applications. Halsted Press: New York, 1981.
20. De Mulder T. Stabilized Finite Element Methods (SUPG, GLS, ...) for Incompressible Flows. 28th CFD Lecture

Series. von Karman Institute: Belgium, 1997.
21. Malkus DS. Eigenproblems associated with the discrete LBB condition for incompressible finite elements.

International Journal of Engineering Science 1981; 19:1299–1310.
22. Griffiths DF. Discretized Eigenvalue Problems, LBB Constants and Stabilization. Pitman Research Notes in

Mathematics, vol. 334. Longman Scientific & Technical: England, 1996.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1291–1314
DOI: 10.1002/fld



1314 D. Z. TURNER, K. B. NAKSHATRALA AND K. D. HJELMSTAD

23. Gresho PM, Sani RL. Incompressible Flow and the Finite Element Method Volume 2: Isothermal Laminar Flow.
Wiley: New York, 2000.

24. Sani RL, Gresho PM, Lee RL, Griffiths DF. The cause and cure(?) of the spurious pressure generated by
certain FEM solutions of the incompressible Navier–Stokes equations: part 1. International Journal for Numerical
Methods in Fluids 1981; 1:17–43.

25. Donea J, Huerta A. Finite Element Methods for Flow Problems. Wiley: West Sussex, England, 2003.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:1291–1314
DOI: 10.1002/fld


